Miihle Spiel

Gott sei Dank! Im Gegensatz zum Damespiel mit seinen deutschen, englischen
und sonstigen Regeln ist das Miihlespiel eindeutig! Manchmal schlage ich
sogar den Computer. Beim Damespiel ist es anders, weil man auch riickwarts
schlagen kann. Da verliere ich immer.

Das Spielfeld besteht aus drei ineinander verschachtelten Quadraten. lhre
Mittelpunkte sind durch gerade Linien verbunden. Diese raffinierte
Konstruktion erzeugt acht Schnittpunkte pro Quadrat. Zu Beginn besitzen
sowohl der Spieler als auch der Computer neun Spielsteine, die sich durch
zwei verschiedene Farben unterscheiden. In unserem Spiel verwenden wir
Gold (du) und Schwarz (Computer). Ziel des Spiels ist es, so viele Miihlen wie
moglich zu schlieBen und so die gegnerischen Spielsteine vom Brett zu
entfernen, bis nur noch zwei librig sind. Jedes Spiel besteht aus drei Phasen
mit jeweils eigenen Regeln.

In der Setzphase, du beginnst (Gold), werden die Spielsteine abwechselnd auf
das zundchst leere Spielbrett positioniert. Als Ablagepunkte dienen die acht
Schnittpunkte eines Quadrates. Du erledigst das mit zwei Mausklicks.
Quellen-Stein anklicken und danach Zielpunkt anklicken. Der Stein bewegt
sich zur Zielposition. Der Computer folgt mit seiner Platzierung sofort,
natiirlich ohne Klicks.

Nachdem beide Parteien ihre neun Spielsteine gesetzt haben, beginnt die
Zugphase des Spiels. In dieser ist es jedem erlaubt, seine eigenen Spielsteine
von einem Schnittpunkt zu einem benachbarten zu ziehen. Allerdings miissen
die Schnittpunkte, auf die gezogen werden soll, frei von anderen Spielsteinen
sein. Auch in dieser Phase wechseln sich die beiden Parteien mit ihren Ziigen
ab. Eine Miihle entsteht, sobald drei Spielsteine einer Farbe auf einer
Geraden nebeneinander liegen. Dies gilt sowohl fiir vertikale, als auch fiir
horizontale Geraden. Miihlen kénnen geoffnet und geschlossen werden. Das
SchlieBen einer Miihle hat zur Folge, dass der Gegner einen Stein verliert.

Die Endphase beginnt fiir einen Spieler, sobald er nur noch drei Spielsteine
zur Verfiligung hat. Er darf nun seine Spielsteine von einem beliebigen
Schnittpunkt zu einem freien anderen bewegen. Es ist also nicht mehr
zwingend notwendig, dass Schnittpunkte, auf die gezogen werden soll,
benachbart sind (Springen).

Das Ende des Spiels ist erreicht, sobald eines der folgenden Szenarien Eintritt:
> Ein Spieler hat weniger als drei Spielsteine auf dem Spielbrett (dieser
Spieler hat verloren).
> Ein Spieler kann keinen legalen Zug mehr ausfiihren, obwohl er an der
Reihe ist (dieser Spieler hat verloren).
> Es wird dreimal in Folge die gleiche Stellung der Spielsteine erreicht
(Unentschieden).

Die technischen Details

Es empfiehlt sich, die drei Dateien — HTML, CSS und JavaScript
herunterzuladen. Die Entwicklertools von Google Chrome bieten alles, was du
benotigst. Wahrend das Miihlespiel in lhrem Browser lauft, driickst du F12,
um darauf zuzugreifen.

Konstanten — das Spielfeld & Regeln
Damit das Programm weiR}, was "Miihle" liberhaupt ist, braucht es eine
digitale Landkarte. Ganz am Anfang werden feste Daten ,Landkarte”
definiert:
> BOARD_LAYOUT - Koordinaten aller 24 Spielfeld-Punkte (wo die
Steine liegen konnen). Ohne diese wiisste der Computer nicht, wo er
die Kreise zeichnen soll.
> ADJACENCY - Welche Punkte miteinander verbunden sind (fiir
erlaubte Ziige). Das ist das "Navigationssystem". Hier steht fiir jeden
Punkt drin, zu welchen Nachbarn man wandern darf. Das ist wichtig,
um illegale Spriinge quer iiber das Feld zu verhindern.
> MILLS - Alle moglichen Dreier-Reihen (= Miihlen). Jedes Mal, wenn ein
Stein bewegt wird, scannt das Programm diese Liste ab: ,,Gehoéren diese
drei Punkte jetzt alle dem Gold-Spieler?“
(¥ Das sind quasi die Regeln und die Geometrie des Spiels.

Spielzustand (state)
Hier wird gespeichert, was gerade im Spiel passiert. Das Kurzzeitgedachtnis.
Wer ist dran? Wie viele Steine hat jeder
noch in der Hand? Sind wir in der Setz- oder in der Zugphase?
(¥ Das ist das “Gedéchtnis” des Spiels.

Initialisierung (initBoard)
Beim Start:
> SVG-Kreise fiir alle Spielfeldpunkte werden erstellt
> Klick-Events werden registriert
> Schwierigkeit auswihlbar gemacht
> Ul wird aktualisiert
(% Hier wird das Spielfenster aufgebaut.

Spieler-Interaktion (handleNodeClick - Game Flow)
Das ist die zentrale Steuerung beim Klicken. Je nach Phase passiert etwas
anderes. Das Herzstiick der Interaktion ist die Funktion handleNodeClick. Sie
ist wie ein Pfortner, der entscheidet, was bei einem Klick passiert:
> Setzphase:, Ist der Platz frei? Okay, setz einen Stein.”
> Zugphase: ,Hast du einen deiner Steine angeklickt? Gut, er leuchtet
jetzt. Klickst du jetzt auf ein leeres Nachbarfeld? Dann schiebe ihn
dorthin.”
> Miihle-Check: Nach jedem Zug wird geschaut, ob eine Miihle
entstanden ist. Wenn ja, wechselt das
> Spiel in den Modus REMOVING, und du darfst (oder musst) einen
gegnerischen Stein wahlen.
(% Das ist der Haupt-Controller fiir Spieleraktionen.

Kernaktionen
Funktionen, die direkt Spielziige verandern:
> placeStone() = neuen Stein setzen & anzeigen
> moveStone() = Stein verschieben
» removeStone() > Stein l16schen
> endTurn() - Sieger priifen, Phase wechseln, Kl starten
(¥ Das sind die grundlegenden Spielmechaniken.

KI-System (aiMove())

> Die KI: Berechnet besten Zug mit Minimax

> Die KI: Fithrt ihn aus

> Die KI: Priift ob Miihle entstanden ist

> Die KI: Entfernt ggf. einen Stein
Wie denkt die KI?
Stell dir vor, die Kl spielt das Spiel in ihrem Kopf tausende Male bis zu 5 Ziige
weit voraus. Maximieren: Die Kl sucht Ziige, die ihren eigenen "Score"
(Punktestand) erh6hen. Minimieren: Die KI nimmt an, dass du perfekt spielst

und versuchst, ihren Score so weit wie moglich zu senken. Alpha-Beta-
Pruning: Ein kluger Filter. Wenn die KI merkt, dass ein Zug sowieso
katastrophal endet, hort sie sofort auf, diesen Ast weiter zu berechnen. Das
spart Rechenzeit und verhindert, dass dein Browser einfriert.
Pruning (englisch fiir ,beschneiden” oder ,stutzen”) bezeichnet das
systematische Entfernen uberfliissiger Teile, um Effizienz, Struktur oder
Wachstum zu optimieren. Informatik! Optimierung neuronaler Netze durch
Entfernen unnoétiger Parameter. Pruning steht allgemein fiir das Kiirzen,
Entschlacken oder Vereinfachen. Da die Kl nicht bis zum Ende des Spiels
schauen kann (das waren Milliarden Maéglichkeiten), braucht sie eine
Faustregel, um eine Position zu bewerten:

> Viele eigene Steine = Gut.

> Eigene Miihlen = Sehr gut.

> Den Gegner blockieren = Exzellent.

» Zwickmiihlen vorbereiten = Profi-Niveau.
(5 So entscheidet die Kl strategisch.

Helper-Funktionen. Viele kleine Regel-Checks
> checkMill() > ist eine Miihle entstanden?
> isValidMove() - darf man dort hin ziehen?
> getAvailableActionsForBoard() - alle méglichen Ziige
> simulateMove() > KI-Simulation
» findVictim() - Stein zum Entfernen wihlen
> highlightNodes() - Ul-Markierung
> updateUl() - Statusanzeigen
(% Das sind kleine Bausteine fiir Regeln & Darstellung.

Start. Ganz am Ende
> initBoard();
(s Spiel wird gestartet und angezeigt.

Kurz gesagt: Der Code besteht aus vier grof3en Bereichen
> Spielfeld & Regeln definieren
> Spielzustand verwalten
> Spieler-Logik & Ul
> KI mit Minimax-Strategie

NINE MEN'S MORRIS GAME

-

(N
— CONSTANTS & SETUP — PLAYER ACTIONS
i) mltBoard() | hnndleNodeChck()—I [updareu.() [

« Adjacency Rules

« Mill Combinations
« Difficulty Levels [placeStane()—| I maveStone()—l Iﬁmouesmne() l

— GAME STATE —

¢ Board Array 4 endTurn()
e Game Phase checkMuH()

e Turn Tracker t
ValidM
o Player Counters m

Microsoft Visio

NINE MEN'S MORRIS GAME

STATE MACHINE DIAGRAM
— PHASEN-LOGIK —

SETTING Alle Steine gesetzt

(Steine setzen)

*EndTurn()

Mihyhe
gebildet

gebildet |
|

MOVING

(Main Phase)

REMOVING

(Steinen schlagen)

Stein
entfernt

State Phase

SETTING

(Steine setzen)

¢
Kl dran.__,l

L
Siegbedingungen (Ende des Spiels) ‘___-_,,’

erfullt +*aiMove()

TRANSITION REMINDER:

==Pp Alle Steine gesetzt == Aule Steine gesetzt
== Miihle gebildet == Stein entfernt
==P Siegbedingungen erfiilit ==» Kl dran...

Microsoft Visio

Nine Men’s Morris Game - Sequence Diagram

Turn Process = Developer-Level

:] —EIZE0 Pager actions
() - Game Logic processs

() -EEE AL processes

Game State Player Actions Al Logic
I
L. Click Board Position H

1 handleNodeChck(lndex)W

Phase'? ---4 handleSETT (index)
— handleMOVING(mdex)
handleREMOVlNG(lndex)

I [
I [
I 1
! i
' 1
I 1
| 1
| |
| 1
I !
| 1
1 |

l © placeStone (index, 1)

rcheckM:ll(mdex, 1)7 =
3

|

I

5 Nein

i @ [endTurn()
I

Ja

=

oveStone (from, to)

(checkMill(to, 1)?]___;

—----{3pF---------

i

I
endTurn() J _______ :_

|

' © removeStone (mclex)‘}ﬁv P 1
|
| ' |
l i :
| ' L ¥ |
1
Check Win Conditions '_) :
© Update Board State F L aiMove()
@ Select / Move Stone 1
O Remove Stone minimax(depth)

4

| evaluateBoard()

3
L endTurn()]

| 1
| 1
| |
| I
| I
| I
| I
| 1
: :
| I
v v v \ 4

(Demmic sklll 2.5 inl flow)

Microsoft Visio

Liebe Leserinnen und Leser. Hallo du!
Zum Schluss mochte ich die Karten auf den Tisch legen. Mit der Programmierung in Python und C++
beschiftige ich mich ja schon viele Jahre. Jedoch mit der JavaScript-Programmierung habe ich erst
im Jahr 2022 angefangen. JavaScript ist Neuland fiir mich. Einige Programmierer, die meine
Webseite besuchten, haben sich dahingehend geduBlert: ,,Guck an! Man sieht das er aus der
Python-Ecke kommt“! ,Vom strukturellen schlanken JavaScript versteht er noch nicht viel“. Zuriick
zu der Implementierung des Brettspieles ,,Dame & Miihle“. Vor Jahren habe ich das Brettspiel mit
Python bereits gemacht. Mitte des Jahres 2025 habe ich dann begonnen diese Spiele mit JavaScript
umzusetzen. Die Implementierung fiir zwei Spieler hatte ich schon geschafft, jedoch die
Programmintegration ,ein Spieler gegen den Computer”, das war eine echte Herausforderung! Ich
brauchte Hilfe! Folgende Quellen habe ich angezapft: Gravitar
(https://www.youtube.com/@Gravitar), Github.com und https://stackoverflow.com/. Ich habe fiir
jedes Spiel einen kleinen Fahrplan erstellt mit kleinen Funktion-Bausteinen. Diese sogenannten
Code-Snippets habe ich dann kopiert. Einen kleinen Fragekatalog erstellt und Google Gemini
mitgeteilt. Die Resonanz sah dann meisten folgendermafien aus: Geht mit CSS besser, einfacher.
Mach es mit Listen in Listen. Soll ich dir das als Class umschreiben? Usw. Der Kl-Service ist ja noch
kostenlos. In ein paar Jahren kostet das mit Sicherheit Geld! Trotz alledem, der Debugger ist schon
ziemlich heiR gelaufen! Wie bereits oben erwdhnt habe ich in der Jahresmitte 2025 damit
angefangen, mit vielen Unterbrechungen und jetzt Februar 2026 ist es soweit fertig.

Hinweis! Fehlerfrei kann diese Software nicht sein! Ohne Gewadhr!
Februar 2026 Hans Busche

https://www.youtube.com/@Gravitar
https://stackoverflow.com/

