Dame Spiel

Auf einem Spielfeld sind 8x8 Kacheln positioniert. Diese 64 Kacheln sind im
Farbwechsel, in WeiR und in Griin, abgebildet. Auf der oberen Halfte des
Spielfeldes sind 12 schwarze Steine auf jeweils einer griinen Kachel platziert.
Aquivalent auf der unteren Hilfte des Spielfeldes sind weiRe Steine auf
jeweils einer griinen Kachel positioniert. Du spielst gegen den Computer und
benutzt die weilRen Steine. Weiterhin beginnst du mit dem Spiel. Weil
beginnt.

Ein weiRer Stein, dessen benachbarte diagonale griine Kachel(n) frei ist/sind,
wird mit der Maus angeklickt. Sofort wechselt die griine(n) Kachel(n) die
Farbe in ein helleres Griin. Das ist eine Hilfe fiir dich. Klick nun eine der mit
hellem Griin markierten Kachel an, und der Stein bewegt sich zu dieser neuen
Zielposition. Der Computer reagiert mit den schwarzen Steinen entsprechend.

Ziel des Damespiels ist es, die gegnerischen Steine zu entern. Erreicht ein
Stein die Grundlinie des Gegners, wird dieser Stein zur Dame gekront. Die
nachfolgende Textpassage ,, Schlagzwang” erklart die Eliminierung eines
Steins.

Schlagzwang

Ist ein gegnerischer Stein diagonal benachbart und das Feld dahinter frei,
muss dieser libersprungen und geschlagen werden. Bestehen verschiedene
Moglichkeiten, zu schlagen, darf frei gewahlt werden, welche Variante
genutzt wird. Wenn das Zielfeld eines Sprungs auf ein Feld fiihrt, von dem aus
einem weiteren Stein libersprungen werden kann, wird der Sprung nicht
fortgesetzt. Eine Dame (durch das Erreichen der Grundlinie des Gegners) kann
Uiber mehrere freie Felder hinweg schlagen.

Die technischen Details

Das Downloaden der drei Dateien HTML, CSS und JavaScript ist jetzt vom
Vorteil. Das Webentwicklertool von Google Chrome bietet hier alles was du
brauchst. Wenn das Damespiel im Browser lauft, betatige die Taste F12 und
schon hast du Zugriff.

Wir konzentrieren uns auf das, was das Spiel im Kern zusammenhalt: Die
Mechanik, die Regeln und wie der Computer iiberhaupt weil, dass du gerade
auf einen Stein geklickt hast. Stell dir den Code wie einen digitalen
Schiedsrichter vor, der im Hintergrund mit einem Notizblock sitzt. Hier ist die
Erklarung der wichtigsten Bausteine in "Menschensprache":

Das Spielfeld (Board).
Alles beginnt mit einer Liste von Listen. Fiir den Computer ist das Spielfeld
kein Bild, sondern eine Tabelle mit Zahlen:
> 0 bedeutet: Das Feld ist leer.
> 1 oder -1: Ein normaler Stein (WeiR oder Schwarz).
> 2 oder -2: Eine Dame.

Das Auge, die Funktion "renderBoard()"
Diese Funktion ist der "Maler". Jedes Mal, wenn sich etwas andert (ein Stein
zieht um), lI6scht sie das alte Bild im Browser und zeichnet es anhand der
Zahlen-Tabelle neu.
> Sie schaut: "Ist hier eine 1? Dann mal einen weiRen Kreis."
> Sie priift auch: "Hat der Spieler gerade diesen Stein angeklickt? Wenn
ja, mal einen gelben Rahmen drumherum."

Die Klick-Logik (handleSquareClick()).

Das ist das Gehirn der Steuerung. Es arbeitet in zwei Schritten (der "Zwei-
Klick-Logik").

> Erster Klick: Du klickst einen Stein an. Der Computer priift: "Gehort der
Stein dir?" Wenn ja, merkt er sich die Position (selectedSquare).

> Zweiter Klick: Du klickst auf ein Zielfeld. Jetzt ruft der Computer laut
nach dem Regelbuch (getMoveType()), um zu fragen: "Darf er das
tiberhaupt?"

Das Regelbuch (getMoveType())
Das ist der komplizierteste Teil. Die Funktion berechnet den Unterschied
zwischen Start und Ziel.
> Normaler Zug: Ist das Ziel genau ein Feld diagonal entfernt und leer?
> Schlag-Zug: Sind es zwei Felder Distanz? Und steht auf dem Feld
dazwischen ein Gegner? Wenn ja, gibt die Funktion das Signal: "Zug
erlaubt, und losche den Gegner!"

> Dame-Zug: Hier scannt der Code die gesamte Diagonale. Er schaut Feld
fiir Feld: "Ist der Weg frei? Steht da nur maximal ein Gegner?"

Der Schiedsrichter (canPlayerCapture())
Bevor du ziehst, lasst der Schiedsrichter einmal kurz den Blick liber das ganze
Feld schweifen. Er sucht nach Schlagmaoglichkeiten fiir den aktuellen Spieler.
Findet er eine, tritt der Schlagzwang in Kraft. Er sagt dem Klick-System:
"Blockiere alle normalen Ziige! Der Spieler darf nur klicken, wo er springen
kann."

Die Ausfiihrung (executeMove())
Wenn alles genehmigt ist, werden die Zahlen in der Tabelle getauscht:

> Der Startplatz wird auf 0 gesetzt.

> Das Ziel bekommt die Zahl des Steins.

> Falls ein Gegner iibersprungen wurde, wird dessen Platz ebenfalls auf 0
gesetzt.

> Die Krénung: Erreicht ein Stein die gegeniiberliegende Seite, wird aus
der 1 eine 2 (die Dame).

Der Rundenwechsel
Am Ende jeder Aktion dreht der Computer das Vorzeichen um (currentPlayer
*=-1). Aus 1 (WeiB) wird -1 (Schwarz). Jetzt ist der andere dran. Ganz zum
Schluss priift er noch: "Hat ein Spieler keine Steine oder keine Ziige mehr?"
Dann wirft er das "Game Over"-Fenster auf den Schirm.

Kurz gesagt: Der JavaScript-Code ist ein standiger Kreislauf aus Anschauen
(Tabelle lesen), Abgleichen (Regeln priifen) und Umrechnen (Tabelle dndern).

Die Sache mit der Dame ist sehr, sehr komplex!

Stell dir vor, der Computer macht nach jedem einzelnen Steinwurf eine kleine
Abschlusskontrolle, bevor er das Brett wieder fiir den nachsten Spieler
freigibt.

Die "Ziellinien"-Kontrolle
Der Computer weil jederzeit, in welcher Reihe (r) ein Stein gelandet ist. Er
kennt die Grenzen seines Spielfeldes:
> Reihe 0 ist die oberste Kante (das Ziel fir WeiR).
> Reihe 7 ist die unterste Kante (das Ziel fiir Schwarz).

Sobald eine Bewegung ausgefiihrt wurde, stellt der Computer zwei kurze
Fragen:

> "Bist du ein weiRer Stein (1) und stehst jetzt in Reihe 0?"

> "Bist du ein schwarzer Stein (-1) und stehst jetzt in Reihe 7?"

Das nachfolgende Bild zeigt die Zusammenhange:

executeMove(from, toR, toC, move) {
board[toR][toC] = board[from.r][from.c];
board[from.r][from.c] = 8;
if (move.type === "capture”) board[move.captured.r][move.captured.c] = 8;

if {
to
to

@ && board[toR][toC]
7 && board[toR][toC]

= J—
R ===

board| toR][toC] = Math.sign(board[toR][toC]) * 2;

Manchmal nutzen Programmierer auch einen mathematischen Trick:
board[toR][toC] *= 2. Aus der 1 wird eine 2, aus der -1 eine -2. Die Zahl
verdoppelt sich, und damit weil} das System: "Achtung, das ist jetzt ein Super-
Stein!"

Was andert sich fiir den Stein?

Sobald aus der 1 eine 2 geworden ist, andern sich zwei Dinge schlagartig:

> Die Optik: Die Funktion renderBoard() sieht die 2 und sagt: "Ah, eine
zwei! Ich klebe diesem Stein jetzt ein Kronchen-Symbol (Dame &y) auf
oder gebe ihm eine goldene CSS-Klasse."

> Die Superkrifte: Wenn du das nichste Mal mit diesem Stein ziehen
willst, schaut die Logik getMoveType ins Regelbuch. Sie sieht: "Oh, das
ist kein normaler Stein mehr, das ist eine 2. Er darf jetzt nicht nur ein
Feld weit springen, sondern wie ein Laserstrahl liber das ganze Brett
fliegen!"

Warum ist das so wichtig?
Ohne diese kleine "Checkliste" am Ende der executeMove-Funktion wiirde
dein Stein einfach am Rand stehen bleiben und kénnte nichts mehr tun. Er
wadre wie ein Tourist, der am Ende der Welt angekommen ist und nicht weiR,
wie er umdrehen soll. Erst die Zahl 2 gibt ihm die Erlaubnis, die Richtung zu
andern und wieder zuriick ins Feld zu stiirmen.

Zugeigenschaften der Dame! Fiir uns ist es ein langer diagonaler Weg, fiir den
Computer ist es eine Schritt-fiir-Schritt-Analyse. Stell dir vor, die Dame ist wie
ein Laserpointer. Wenn du ein Ziel anklickst, schaltet der Computer den Laser
an und priift jeden einzelnen Zentimeter des Strahls, bevor der Stein losfliegt.

Hier ist der Ablauf in drei einfachen Schritten:

Die Richtung finden
Zuerst berechnet der Computer die Richtung. Er schaut: "Geht es nach oben-
rechts, oben-links, unten-rechts oder unten-links?" Im Code ist das eine
einfache Subtraktion der Koordinaten. Er weil} jetzt: "Ich muss pro Schritt
immer +1 zur Reihe und -1 zur Spalte rechnen."

Der diagonale Scan (Die "Schleife")
Der Computer springt jetzt nicht sofort zum Ziel. Er geht das Brett Feld fiir
Feld auf der Diagonale ab. Das ist wie eine Patrouille:
> Feld 1: "Ist hier jemand?" -> Nein, leer. "Weitergehen."
> Feld 2: "Ist hier jemand?" -> Ja, ein Stein.
Die entscheidende Priifung: "Gehort der Stein mir?"
> Wenn JA: Der Laser prallt ab. Der Zug wird sofort als ungiiltig markiert.
Der Stein darf nicht mal auf diesem Feld landen, geschweige denn
dariiber fliegen.
> Wenn NEIN (Gegner): Der Computer macht sich eine Notiz: "Gegner
gefunden an Position XY."

Die "Ein-Gegner-Regel"
Hier ist der Computer sehr streng. Damit die Dame nicht zu machtig wird, darf
sie in einem Zug nur genau einen Gegner schlagen.
> Findet der Scan auf dem Weg zum Ziel einen zweiten Gegner? -> Stopp!
Der Zug ist ungiiltig.
> Ist das Feld direkt hinter dem ersten Gegner belegt? -> Stopp! Der Zug
ist ungiiltig.
Zusammenfassend: Der Computer nutzt eine sogenannte while-Schleife (eine
"Solange-bis"-Wiederholung). Er sagt: "Solange ich das Ziel noch nicht
erreicht habe, priife das nachste Feld. Wenn du einen eigenen Stein siehst,
brich sofort ab."

currk !== toR
n = currentBoard[currR][currl];

if (p !==8) {
if (Math.sign(p player || enemy) return null;

Zeile 166: "Hier steht einer von uns! Zugriff verweigert." Es ist also eine ganz
einfache "Wenn-Dann"-Logik, die verhindert, dass deine Dame deine eigenen
Leute einfach "uberfihrt".

Wer hat gewonnen? Wie erkennt der Computer das?

Das ist eine der "fiesesten" Arten zu verlieren: Man hat eigentlich noch
Steine, aber man steht sich selbst oder dem Gegner so im Weg,

dass nichts mehr geht. Der Computer geht dabei vor wie ein Detektiv, der
nacheinander alle Tiiren priift. Hier ist der Ablauf:

Die Inventur (canMove())
Nach jedem Zug schaut der Computer den Spieler an, der jetzt eigentlich dran
ware. Er macht eine Bestandsaufnahme:
> Er sucht auf dem Brett nach allen Steinen dieses Spielers.
> Fiir jeden Stein, den er findet, stellt er die Frage: ,,Gibt es irgendein Feld
auf diesem Brett, auf das du legal ziehen oder springen darfst?“

Der ,,Was-ware-wenn“-Test
Der Computer probiert im Kopf (im Code) alle Richtungen aus. Er fragt das
Regelbuch (getMoveType()):
> ,Darf dieser Stein nach vorne links?“ -> Antwort: Nein, besetzt.
> ,Darf dieser Stein nach vorne rechts?“ -> Antwort: Nein, Rand.
» ,Darf dieser Stein springen?“ -> Antwort: Nein, kein Platz.

Die Sackgasse
Wenn der Computer alle Steine des Spielers durchgegangen ist und bei jedem
einzelnen ein , Nein“ vom Regelbuch bekommen hat, zieht er die Rei}leine.
Fiir den Computer ist das ein logischer Schalter:
> Mogliche_Ziige > 0? -> Weiterspielen.
» Mogliche_Ziige === 0? -> Spiel beenden.

Wir Menschen libersehen oft eine kleine Liicke oder eine Schlagmaoglichkeit
am anderen Ende des Bretts. Der Computer hingegen ist gnadenlos: Er scannt

alle 64 Felder in Millisekunden. Er ,,sieht” die Blockade schon, bevor du
liberhaupt merkst, dass du dich festgefahren hast.

Math.sign(board[r][c
getValidMovesForPiece(r, ¢ , board).length > @

Wenn diese Funktion false liefert, wird sofort das Game Over Overlay
aufgerufen und verkiindet den Sieger.

Das war jetzt ein tiefer Einblick in die Mechanik! Jetzt bin ich auch etwas
erschopft. Sozusagen bin ich ja ein Alleinunterhalter und einen Lektor habe
ich auch nicht. Noch einen Hinweis! Fehlerfrei kann diese Software nicht sein!
Ohne Gewadbhr!

Liebe Leserinnen und Leser. Hallo du!
Zum Schluss mochte ich die Karten auf den Tisch legen. Mit der Programmierung in Python und C++
beschaftige ich mich ja schon viele Jahre. Jedoch mit der JavaScript-Programmierung habe ich erst
im Jahr 2022 angefangen. JavaScript ist Neuland fiir mich. Einige Programmierer, die meine
Webseite besuchten, haben sich dahingehend geduBert: ,,Guck an! Man sieht das er aus der
Python-Ecke kommt“! ,Vom strukturellen schlanken JavaScript versteht er noch nicht viel“. Zuriick
zu der Implementierung des Brettspieles ,Dame & Miihle“. Vor Jahren habe ich das Brettspiel mit
Python bereits gemacht. Mitte des Jahres 2025 habe ich dann begonnen diese Spiele mit JavaScript
umzusetzen. Die Implementierung fiir zwei Spieler hiatte ich schon geschafft, jedoch die
Programmintegration ,ein Spieler gegen den Computer”, das war eine echte Herausforderung! Ich
brauchte Hilfe! Folgende Quellen habe ich angezapft: Gravitar
(https://www.youtube.com/@Gravitar), Github.com und https://stackoverflow.com/. Ich habe fiir
jedes Spiel einen kleinen Fahrplan erstellt mit kleinen Funktion-Bausteinen. Diese sogenannten
Code-Snippets habe ich dann kopiert. Einen kleinen Fragekatalog erstellt und Google Gemini

mitgeteilt. Die Resonanz sah dann meisten folgendermallen aus: Geht mit CSS besser, einfacher.
Mach es mit Listen in Listen. Soll ich dir das als Class umschreiben? Usw. Der Kl-Service ist ja noch
kostenlos. In ein paar Jahren kostet das mit Sicherheit Geld! Trotz alledem, der Debugger ist schon
ziemlich heiR gelaufen! Wie bereits oben erwdhnt habe ich in der Jahresmitte 2025 damit
angefangen, mit vielen Unterbrechungen und jetzt Februar 2026 ist es soweit fertig.

Februar 2026 Hans Busche

https://www.youtube.com/@Gravitar
https://stackoverflow.com/

