
Dame Spiel

Auf einem Spielfeld sind 8x8 Kacheln positioniert. Diese 64 Kacheln sind im
Farbwechsel, in Weiß und in Grün, abgebildet. Auf der oberen Hälfte des
Spielfeldes sind 12 schwarze Steine auf jeweils einer grünen Kachel platziert.
Äquivalent auf der unteren Hälfte des Spielfeldes sind weiße Steine auf
jeweils einer grünen Kachel positioniert. Du spielst gegen den Computer und
benutzt die weißen Steine. Weiterhin beginnst du mit dem Spiel. Weiß
beginnt.

Ein weißer Stein, dessen benachbarte diagonale grüne Kachel(n) frei ist/sind,
wird mit der Maus angeklickt. Sofort wechselt die grüne(n) Kachel(n) die
Farbe in ein helleres Grün. Das ist eine Hilfe für dich. Klick nun eine der mit
hellem Grün markierten Kachel an, und der Stein bewegt sich zu dieser neuen
Zielposition. Der Computer reagiert mit den schwarzen Steinen entsprechend.

Ziel des Damespiels ist es, die gegnerischen Steine zu entern. Erreicht ein
Stein die Grundlinie des Gegners, wird dieser Stein zur Dame gekrönt. Die
nachfolgende Textpassage „Schlagzwang“ erklärt die Eliminierung eines
Steins.

Schlagzwang

Ist ein gegnerischer Stein diagonal benachbart und das Feld dahinter frei,
muss dieser übersprungen und geschlagen werden. Bestehen verschiedene
Möglichkeiten, zu schlagen, darf frei gewählt werden, welche Variante
genutzt wird. Wenn das Zielfeld eines Sprungs auf ein Feld führt, von dem aus
einem weiteren Stein übersprungen werden kann, wird der Sprung nicht
fortgesetzt. Eine Dame (durch das Erreichen der Grundlinie des Gegners) kann
über mehrere freie Felder hinweg schlagen.

Die technischen Details

Das Downloaden der drei Dateien HTML, CSS und JavaScript ist jetzt vom
Vorteil. Das Webentwicklertool von Google Chrome bietet hier alles was du
brauchst. Wenn das Damespiel im Browser läuft, betätige die Taste F12 und
schon hast du Zugriff.

Wir konzentrieren uns auf das, was das Spiel im Kern zusammenhält: Die
Mechanik, die Regeln und wie der Computer überhaupt weiß, dass du gerade
auf einen Stein geklickt hast. Stell dir den Code wie einen digitalen
Schiedsrichter vor, der im Hintergrund mit einem Notizblock sitzt. Hier ist die
Erklärung der wichtigsten Bausteine in "Menschensprache":

Das Spielfeld (Board).
Alles beginnt mit einer Liste von Listen. Für den Computer ist das Spielfeld
kein Bild, sondern eine Tabelle mit Zahlen:

 0 bedeutet: Das Feld ist leer.
 1 oder -1: Ein normaler Stein (Weiß oder Schwarz).
 2 oder -2: Eine Dame.

Das Auge, die Funktion "renderBoard()"
Diese Funktion ist der "Maler". Jedes Mal, wenn sich etwas ändert (ein Stein
zieht um), löscht sie das alte Bild im Browser und zeichnet es anhand der
Zahlen-Tabelle neu.

 Sie schaut: "Ist hier eine 1? Dann mal einen weißen Kreis."
 Sie prüft auch: "Hat der Spieler gerade diesen Stein angeklickt? Wenn

ja, mal einen gelben Rahmen drumherum."

Die Klick-Logik (handleSquareClick()).

Das ist das Gehirn der Steuerung. Es arbeitet in zwei Schritten (der "Zwei-
Klick-Logik").

 Erster Klick: Du klickst einen Stein an. Der Computer prüft: "Gehört der
Stein dir?" Wenn ja, merkt er sich die Position (selectedSquare).

 Zweiter Klick: Du klickst auf ein Zielfeld. Jetzt ruft der Computer laut
nach dem Regelbuch (getMoveType()), um zu fragen: "Darf er das
überhaupt?"

Das Regelbuch (getMoveType())
Das ist der komplizierteste Teil. Die Funktion berechnet den Unterschied
zwischen Start und Ziel.

 Normaler Zug: Ist das Ziel genau ein Feld diagonal entfernt und leer?
 Schlag-Zug: Sind es zwei Felder Distanz? Und steht auf dem Feld

dazwischen ein Gegner? Wenn ja, gibt die Funktion das Signal: "Zug
erlaubt, und lösche den Gegner!"

 Dame-Zug: Hier scannt der Code die gesamte Diagonale. Er schaut Feld
für Feld: "Ist der Weg frei? Steht da nur maximal ein Gegner?"

Der Schiedsrichter (canPlayerCapture())
Bevor du ziehst, lässt der Schiedsrichter einmal kurz den Blick über das ganze
Feld schweifen. Er sucht nach Schlagmöglichkeiten für den aktuellen Spieler.
Findet er eine, tritt der Schlagzwang in Kraft. Er sagt dem Klick-System:
"Blockiere alle normalen Züge! Der Spieler darf nur klicken, wo er springen
kann."

Die Ausführung (executeMove())
Wenn alles genehmigt ist, werden die Zahlen in der Tabelle getauscht:

 Der Startplatz wird auf 0 gesetzt.
 Das Ziel bekommt die Zahl des Steins.
 Falls ein Gegner übersprungen wurde, wird dessen Platz ebenfalls auf 0

gesetzt.
 Die Krönung: Erreicht ein Stein die gegenüberliegende Seite, wird aus

der 1 eine 2 (die Dame).

Der Rundenwechsel
Am Ende jeder Aktion dreht der Computer das Vorzeichen um (currentPlayer
*= -1). Aus 1 (Weiß) wird -1 (Schwarz). Jetzt ist der andere dran. Ganz zum
Schluss prüft er noch: "Hat ein Spieler keine Steine oder keine Züge mehr?"
Dann wirft er das "Game Over"-Fenster auf den Schirm.

Kurz gesagt: Der JavaScript-Code ist ein ständiger Kreislauf aus Anschauen
(Tabelle lesen), Abgleichen (Regeln prüfen) und Umrechnen (Tabelle ändern).

Die Sache mit der Dame ist sehr, sehr komplex!

Stell dir vor, der Computer macht nach jedem einzelnen Steinwurf eine kleine
Abschlusskontrolle, bevor er das Brett wieder für den nächsten Spieler
freigibt.

Die "Ziellinien"-Kontrolle
Der Computer weiß jederzeit, in welcher Reihe (r) ein Stein gelandet ist. Er
kennt die Grenzen seines Spielfeldes:

 Reihe 0 ist die oberste Kante (das Ziel für Weiß).
 Reihe 7 ist die unterste Kante (das Ziel für Schwarz).

Sobald eine Bewegung ausgeführt wurde, stellt der Computer zwei kurze
Fragen:

 "Bist du ein weißer Stein (1) und stehst jetzt in Reihe 0?"
 "Bist du ein schwarzer Stein (-1) und stehst jetzt in Reihe 7?"

Das nachfolgende Bild zeigt die Zusammenhänge:

Manchmal nutzen Programmierer auch einen mathematischen Trick:
board[toR][toC] *= 2. Aus der 1 wird eine 2, aus der -1 eine -2. Die Zahl
verdoppelt sich, und damit weiß das System: "Achtung, das ist jetzt ein Super-
Stein!"

Was ändert sich für den Stein?

Sobald aus der 1 eine 2 geworden ist, ändern sich zwei Dinge schlagartig:
 Die Optik: Die Funktion renderBoard() sieht die 2 und sagt: "Ah, eine

zwei! Ich klebe diesem Stein jetzt ein Krönchen-Symbol (Dame👑) auf
oder gebe ihm eine goldene CSS-Klasse."

 Die Superkräfte: Wenn du das nächste Mal mit diesem Stein ziehen
willst, schaut die Logik getMoveType ins Regelbuch. Sie sieht: "Oh, das
ist kein normaler Stein mehr, das ist eine 2. Er darf jetzt nicht nur ein
Feld weit springen, sondern wie ein Laserstrahl über das ganze Brett
fliegen!"

Warum ist das so wichtig?
Ohne diese kleine "Checkliste" am Ende der executeMove-Funktion würde
dein Stein einfach am Rand stehen bleiben und könnte nichts mehr tun. Er
wäre wie ein Tourist, der am Ende der Welt angekommen ist und nicht weiß,
wie er umdrehen soll. Erst die Zahl 2 gibt ihm die Erlaubnis, die Richtung zu
ändern und wieder zurück ins Feld zu stürmen.

Zugeigenschaften der Dame! Für uns ist es ein langer diagonaler Weg, für den
Computer ist es eine Schritt-für-Schritt-Analyse. Stell dir vor, die Dame ist wie
ein Laserpointer. Wenn du ein Ziel anklickst, schaltet der Computer den Laser
an und prüft jeden einzelnen Zentimeter des Strahls, bevor der Stein losfliegt.

Hier ist der Ablauf in drei einfachen Schritten:

Die Richtung finden
Zuerst berechnet der Computer die Richtung. Er schaut: "Geht es nach oben-
rechts, oben-links, unten-rechts oder unten-links?" Im Code ist das eine
einfache Subtraktion der Koordinaten. Er weiß jetzt: "Ich muss pro Schritt
immer +1 zur Reihe und -1 zur Spalte rechnen."

Der diagonale Scan (Die "Schleife")
Der Computer springt jetzt nicht sofort zum Ziel. Er geht das Brett Feld für
Feld auf der Diagonale ab. Das ist wie eine Patrouille:

 Feld 1: "Ist hier jemand?" -> Nein, leer. "Weitergehen."
 Feld 2: "Ist hier jemand?" -> Ja, ein Stein.

Die entscheidende Prüfung: "Gehört der Stein mir?"
 Wenn JA: Der Laser prallt ab. Der Zug wird sofort als ungültig markiert.

Der Stein darf nicht mal auf diesem Feld landen, geschweige denn
darüber fliegen.

 Wenn NEIN (Gegner): Der Computer macht sich eine Notiz: "Gegner
gefunden an Position XY."

Die "Ein-Gegner-Regel"
Hier ist der Computer sehr streng. Damit die Dame nicht zu mächtig wird, darf
sie in einem Zug nur genau einen Gegner schlagen.

 Findet der Scan auf dem Weg zum Ziel einen zweiten Gegner? -> Stopp!
Der Zug ist ungültig.

 Ist das Feld direkt hinter dem ersten Gegner belegt? -> Stopp! Der Zug
ist ungültig.

Zusammenfassend: Der Computer nutzt eine sogenannte while-Schleife (eine
"Solange-bis"-Wiederholung). Er sagt: "Solange ich das Ziel noch nicht
erreicht habe, prüfe das nächste Feld. Wenn du einen eigenen Stein siehst,
brich sofort ab."

Zeile 166: "Hier steht einer von uns! Zugriff verweigert." Es ist also eine ganz
einfache "Wenn-Dann"-Logik, die verhindert, dass deine Dame deine eigenen
Leute einfach "überfährt".

Wer hat gewonnen? Wie erkennt der Computer das?

Das ist eine der "fiesesten" Arten zu verlieren: Man hat eigentlich noch
Steine, aber man steht sich selbst oder dem Gegner so im Weg,
dass nichts mehr geht. Der Computer geht dabei vor wie ein Detektiv, der
nacheinander alle Türen prüft. Hier ist der Ablauf:

Die Inventur (canMove())
Nach jedem Zug schaut der Computer den Spieler an, der jetzt eigentlich dran
wäre. Er macht eine Bestandsaufnahme:

 Er sucht auf dem Brett nach allen Steinen dieses Spielers.
 Für jeden Stein, den er findet, stellt er die Frage: „Gibt es irgendein Feld

auf diesem Brett, auf das du legal ziehen oder springen darfst?“

Der „Was-wäre-wenn“-Test
Der Computer probiert im Kopf (im Code) alle Richtungen aus. Er fragt das
Regelbuch (getMoveType()):

 „Darf dieser Stein nach vorne links?“ -> Antwort: Nein, besetzt.
 „Darf dieser Stein nach vorne rechts?“ -> Antwort: Nein, Rand.
 „Darf dieser Stein springen?“ -> Antwort: Nein, kein Platz.

Die Sackgasse
Wenn der Computer alle Steine des Spielers durchgegangen ist und bei jedem
einzelnen ein „Nein“ vom Regelbuch bekommen hat, zieht er die Reißleine.
Für den Computer ist das ein logischer Schalter:

 Mögliche_Züge > 0? -> Weiterspielen.
 Mögliche_Züge === 0? -> Spiel beenden.

Wir Menschen übersehen oft eine kleine Lücke oder eine Schlagmöglichkeit
am anderen Ende des Bretts. Der Computer hingegen ist gnadenlos: Er scannt

alle 64 Felder in Millisekunden. Er „sieht“ die Blockade schon, bevor du
überhaupt merkst, dass du dich festgefahren hast.

Wenn diese Funktion false liefert, wird sofort das Game Over Overlay
aufgerufen und verkündet den Sieger.

Das war jetzt ein tiefer Einblick in die Mechanik! Jetzt bin ich auch etwas
erschöpft. Sozusagen bin ich ja ein Alleinunterhalter und einen Lektor habe
ich auch nicht. Noch einen Hinweis! Fehlerfrei kann diese Software nicht sein!
Ohne Gewähr!

Liebe Leserinnen und Leser. Hallo du!
Zum Schluss möchte ich die Karten auf den Tisch legen. Mit der Programmierung in Python und C++
beschäftige ich mich ja schon viele Jahre. Jedoch mit der JavaScript-Programmierung habe ich erst
im Jahr 2022 angefangen. JavaScript ist Neuland für mich. Einige Programmierer, die meine
Webseite besuchten, haben sich dahingehend geäußert: „Guck an! Man sieht das er aus der
Python-Ecke kommt“! „Vom strukturellen schlanken JavaScript versteht er noch nicht viel“. Zurück
zu der Implementierung des Brettspieles „Dame & Mühle“. Vor Jahren habe ich das Brettspiel mit
Python bereits gemacht. Mitte des Jahres 2025 habe ich dann begonnen diese Spiele mit JavaScript
umzusetzen. Die Implementierung für zwei Spieler hätte ich schon geschafft, jedoch die
Programmintegration „ein Spieler gegen den Computer“, das war eine echte Herausforderung! Ich
brauchte Hilfe! Folgende Quellen habe ich angezapft: Gravitar
(https://www.youtube.com/@Gravitar), Github.com und https://stackoverflow.com/. Ich habe für
jedes Spiel einen kleinen Fahrplan erstellt mit kleinen Funktion-Bausteinen. Diese sogenannten
Code-Snippets habe ich dann kopiert. Einen kleinen Fragekatalog erstellt und Google Gemini
mitgeteilt. Die Resonanz sah dann meisten folgendermaßen aus: Geht mit CSS besser, einfacher.
Mach es mit Listen in Listen. Soll ich dir das als Class umschreiben? Usw. Der KI-Service ist ja noch
kostenlos. In ein paar Jahren kostet das mit Sicherheit Geld! Trotz alledem, der Debugger ist schon
ziemlich heiß gelaufen! Wie bereits oben erwähnt habe ich in der Jahresmitte 2025 damit
angefangen, mit vielen Unterbrechungen und jetzt Februar 2026 ist es soweit fertig.

Februar 2026 Hans Busche

https://www.youtube.com/@Gravitar
https://stackoverflow.com/

